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FIVE MODELED PATHS TO NET-ZERO IN 2050
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TRANSFORMATIVE BUT AFFORDABLE
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USING SOLUTIONS AT HIGH TECHNOLOGY READINESS LEVEL
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BUILDING BLOCKS OF A NET-ZERO
EMISSIONS ECONOMY
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SIZING UP THE CHALLENGE

Final energy demand by fuel type (EJ)
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Demand for non-hydrocarbon final
energy demands could be satisfied
with zero carbon electricity

Demand for hydrocarbons;
too large to meet with biofuels or
offset with negative emissions.




1. KNOCKING IT DOWN TO SIZE: EFFICIENCY & ELECTRIFICATION

Final energy demand by fuel type (EJ)
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E+ (High Electrification)
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32% reduction in total final energy demand
Same-fuel efficiency: 8 EJ
Electrification: 13 EJ
Oil refining (demand reduction): 4 EJ

68% reduction in hydrocarbon fuel demand
36 EJ less demand for liquids & gaseous fuels




2. CLEAN ELECTRICITY: LINCHPIN FOR A NET-ZERO ECONOMY
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THE GOOD NEWS: WIND, SOLAR, BATTERY COSTS PLUMET
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Data Sources: Wind & solar costs from Lazard (2019), Lazard’s Levelized Cost of Energy Analysis — Version 13.0.
Battery pack costs from Bloomberg New Energy Finance (2019), Battery Price Survey. 10
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WE NEED TO COMPLETE THE BALANCED DIET
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3. NET-ZERO CARBON FUELS

1. Hydrogen made from a variety of sources:
biomass, NG w/CCS, or electrolysis and used
directly or as hythane (blend of H, + CH,)

3. Fossil-derived fuels
with negative
emissions offsets
from biomass w/CCS or
direct air capture

2. Drop-in synthetic
liquid & gaseous fuels
made from biomass or
synthesized from
H, + captured CO,
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HYDROGEN: A CRITICAL ZERO-CARBON ENERGY CARRIER & FUEL
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4. CO2 CAPTURE, STORAGE & USE: AT THE GIGATON SCALE

E+ scenario
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“ALTERNATIVE ENERGY” TO REAL OPTIONS
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Data Sources: Wind & solar costs from Lazard (2019), Lazard’s Levelized Cost of Energy Analysis — Version 13.0.
Battery pack costs from Bloomberg New Energy Finance (2019), Battery Price Survey. 16



THE 2020s: A DECADE TO COMPLETE THE NET-ZERO TOOLKIT

a Clean firm electricity resources: advanced nuclear, advanced geothermal,
fossil and biomass with CO, capture (especially Allam cycle), low-NOx
100% hydrogen combustion turbines & fuel cells; long duration energy storage.

O Hydrogen production via electrolysis, natural gas reforming with CO, capture,
and biomass gasification with CO, capture.

0 CO, capture in a range of industrial applications, including cement, ammonia,
biofuels, and hydrogen.

Q Synthesis of fuels from biomass and H, + CO,, including methane and liquid
hydrocarbons (e.qg., Fischer-Tropsch fuels).

Q Direct hydrogen-reduced iron and other carbon-free alternatives for primary
steel production.

Q High-yield bioenergy crops such as miscanthus.
Q Direct air capture methods.

d Technology innovation to reduce siting challenges. -



THE FORMULA FOR AMERICAN INNOVATION

PRIVATE EQUITY

PROTOTYPE/ MATURITY/
PROOF OF PILOT/ COMMERCIALIZATION/ PRICE

DEMONSTRATION

CONCEPT MATURATION COMPETITION
TECHNOLOGICAL COMMERCIALIZATION NICHE MARKET
VALLEY OF DEATH VALLEY OF DEATH CREATION

See Jenkins & Mansur (2011), “Bridging the Clean Energy Valleys of Death: Helping American Entrepreneurs Meeting the Energy Innovation Imperative”
https://thebreakthrough.org/articles/bridging-the-clean-energy-vall
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