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FIVE MODELED PATHS TO NET-ZERO IN 2050
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TRANSFORMATIVE BUT AFFORDABLE
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USING SOLUTIONS AT HIGH TECHNOLOGY READINESS LEVEL

TRL9 (Commercially mature):
e.g. wind, solar PV, Li-ion batteries, 
electric vehicles, heat pumps, 
building efficiency

TRL 7-8 (Commercial-scale 
demonstration): 
e.g. electrolysis, post-combustion 
CO2 capture, geologic CO2 storage, 
F-T fuels production

TRL 6-7 (Pilot stage):
e.g. oxyfuel Allam-cycle, biomass 
gasification, direct air capture, 
hydrogen combustion turbines
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BUILDING BLOCKS OF A NET-ZERO 
EMISSIONS ECONOMY

1. Efficiency & Electrification

2. Clean Electricity

3. Net-Zero Carbon Fuels

4. CO2 Capture, Use & Storage
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Sizing up the challenge
REFERENCE Demand for non-hydrocarbon final 

energy demands could be satisfied 
with zero carbon electricity

Demand for hydrocarbons; 
too large to meet with biofuels or 

offset with negative emissions.

SIZING UP THE CHALLENGE

33%

67%
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Sizing up the challenge

REFERENCE

1. KNOCKING IT DOWN TO SIZE: EFFICIENCY & ELECTRIFICATION

E+ (High Electrification)

32% reduction in total final energy demand
Same-fuel efficiency: 8 EJ
Electrification: 13 EJ
Oil refining (demand reduction): 4 EJ

68% reduction in hydrocarbon fuel demand
36 EJ less demand for liquids & gaseous fuels

electricity

hydrogen

steam

other petroleum

petr. feedstock

pipeline gas

jet fuel

distillate oil

gasoline

lpg feedstock
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Electricity: the Linchpin
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Total Electricity Generation by Scenario

Less high 
electrification (E-)

Clean electricity: the linchpin

High 
electrification (E+)

Less high electrification, 
high biomass (E-B+)

>2x all current 
generation

>2x carbon-free electricity by 
2030 (4x wind/solar)

2. CLEAN ELECTRICITY: LINCHPIN FOR A NET-ZERO ECONOMY
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Li-ion packs $/KWh -87%  

Utility Solar PV $/MWh -84%

Data Sources: Wind & solar costs from Lazard (2019), Lazard’s Levelized Cost of Energy Analysis – Version 13.0. 
Battery pack costs from Bloomberg New Energy Finance (2019),  Battery Price Survey.

Total cost declines 
(2010-2019)
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Onshore Wind $/MWh -67%

THE GOOD NEWS: WIND, SOLAR, BATTERY COSTS PLUMET
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“Flexible base” “Firm cyclers”

Long-duration 

WE NEED TO COMPLETE THE BALANCED DIET

“Fast 
burst” 

balancing 
resources

“Firm” low-carbon 
resources

“Fuel 
saving” 
variable 

renewables

Wind energy

Solar PV

Run-of-river hydro

Reservoir hydro

Solar thermal 
with storage

Solar thermal



Key zero-carbon fuels and feedstocks

2. Drop-in synthetic 
liquid & gaseous fuels 
made from biomass or 
synthesized from 
H2 + captured CO2

1. Hydrogen made from a variety of sources: 
biomass,  NG w/CCS, or electrolysis and used 
directly or as hythane (blend of H2 + CH4)

3. Fossil-derived fuels 
with negative 
emissions offsets 
from biomass w/CCS or 
direct air capture

3. NET-ZERO CARBON FUELS
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Key zero-carbon fuels and feedstocksHYDROGEN: A CRITICAL ZERO-CARBON ENERGY CARRIER & FUEL
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ATR = autothermal reforming of natural gas with CO2
capture.
BECCS = biomass gasification to H2 with CO2 capture 
(negative net emissions).
Electrolysis = water splitting using electricity.

Electricity = H2 burned in gas turbines in high “hythane” 
blend with CH4 (60% limit by energy).
Pipeline gas = H2 used for “hythane” blend in CH4
pipelines (7% limit by energy).
H2 boiler = industrial steam generation.
Synthetic gas = CH4 synthesis from H2 and CO2.
Synthetic liquids = Fischer Tropsch fuels from H2 + CO2.
Demand side = H2 used in transport and for production   
of chemicals, direct-reduced iron, and process heat in 
various industries.

H2 uses

H2 sources

Note: All fuel values reported in this slide pack are on HHV basis. 14



E+ scenario
~1 billion tCO2/y 
106,000 km pipelines 
(~1/5th of US NG pipelines)
Capital in service: $170B

On a volume basis (at reservoir pressure), 
CO2 flow in 2050 is 1.3x current U.S. oil 
production and ¼ of current oil + gas 
production.

2050
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4. CO2 CAPTURE, STORAGE & USE: AT THE GIGATON SCALE
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Data Sources: Wind & solar costs from Lazard (2019), Lazard’s Levelized Cost of Energy Analysis – Version 13.0. 
Battery pack costs from Bloomberg New Energy Finance (2019),  Battery Price Survey. 16

FROM “ALTERNATIVE ENERGY” TO REAL OPTIONS

Li-ion packs $/KWh -87%  

Utility Solar PV $/MWh -84%

Total cost declines 
(2010-2019)

Onshore Wind $/MWh -67%
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THE 2020s: A DECADE TO COMPLETE THE NET-ZERO TOOLKIT

q Clean firm electricity resources: advanced nuclear, advanced geothermal, 
fossil and biomass with CO2 capture (especially Allam cycle), low-NOx 
100% hydrogen combustion turbines & fuel cells; long duration energy storage.

q Hydrogen production via electrolysis, natural gas reforming with CO2 capture, 
and biomass gasification with CO2 capture.

q CO2 capture in a range of industrial applications, including cement, ammonia, 
biofuels, and hydrogen.

q Synthesis of fuels from biomass and H2 + CO2, including methane and liquid 
hydrocarbons (e.g., Fischer-Tropsch fuels).

q Direct hydrogen-reduced iron and other carbon-free alternatives for primary 
steel production.

q High-yield bioenergy crops such as miscanthus.

q Direct air capture methods.

q Technology innovation to reduce siting challenges.
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THE FORMULA FOR AMERICAN INNOVATION

NICHE MARKET 
CREATION

See Jenkins & Mansur (2011), “Bridging the Clean Energy Valleys of Death: Helping American Entrepreneurs Meeting the Energy Innovation Imperative” 
https://thebreakthrough.org/articles/bridging-the-clean-energy-vall

https://thebreakthrough.org/articles/bridging-the-clean-energy-vall
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RESOURCES
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